

Citation:

M. Weinmann: From 3D Point Clouds to Objects. Invited Talk, GEOBIA 2016 Doctoral Colloquium, Enschede, The Netherlands, 13 September 2016.

From 3D Point Clouds to Objects

Dr.-Ing. Martin Weinmann

GEOBIA 2016 Doctoral Colloquium - 13 September 2016

From 3D Point Clouds to Semantic Objects

Dr.-Ing. Martin Weinmann

GEOBIA 2016 Doctoral Colloquium - 13 September 2016

Literature

- 1. Introduction
- 2. Preliminaries of 3D Point Cloud Processing
- 3. A Brief Survey on 2D and 3D Feature Extraction
- 4. Point Cloud Registration
- 5. Co-Registration of 2D Imagery and 3D Point Cloud Data
- 6. **3D Scene Analysis**
- 7. Conclusions and Future Work

Outline

- 1. Introduction
- 2. Methodology
- 3. Experimental Results
- 4. Conclusions & Future Work

1. Introduction

- Semantic interpretation of 3D point cloud data
 - Unique assignment of a semantic class label to each 3D point (e.g. ground, building or vegetation)
 - General applicability (e.g. for TLS / MLS / ALS or MVS point cloud data)
 - Desired properties
 - → Fully automated and efficient approaches
 - \rightarrow Accurate results (without including prior knowledge?)

1. Introduction

Main challenges

- 1. Introduction
- 2. Methodology
- 3. Experimental Results
- 4. Conclusions & Future Work

Neighborhood

Karlsruhe Institute o

- Recovery of local 3D neighborhoods
 - Spherical neighborhood with fixed radius
 - \rightarrow Which radius ?
 - Cylindrical neighborhood with fixed radius
 - → Which radius ?
 - k closest neighbors in 3D (flexible neighborhood size)
 - \rightarrow Which k?

Recovery of an optimal value for k

Consideration of neighboring 3D points

→ 3D structure tensor
 = 3D covariance matrix

$$\mathbf{S}_{3\mathrm{D}} = \frac{1}{k+1} \sum_{i=0}^{k} \left(\mathbf{X}_{i} - \bar{\mathbf{X}} \right) \left(\mathbf{X}_{i} - \bar{\mathbf{X}} \right)^{T}$$

Recovery of an optimal value for k

Consideration of neighboring 3D points

- \rightarrow 3D structure tensor
 - = 3D covariance matrix
- → Eigenvalues represent the extent of a 3D ellipsoid along its principal axes

Recovery of an optimal value for k

- Dimensionality-based scale selection [Demantké et al., 2011]
 - \rightarrow Idea: favor 1D, 2D or 3D structure and minimize

$$k_{\min} = 10$$

$$k_{\max} = 100$$

$$\Delta k = 1$$

$$E_{\dim} = -L_{\lambda} \ln(L_{\lambda}) - P_{\lambda} \ln(P_{\lambda}) - S_{\lambda} \ln(S_{\lambda})$$

$$\Delta k = 1$$

$$L_{\lambda} = \frac{\lambda_{1} - \lambda_{2}}{\lambda_{1}} \quad P_{\lambda} = \frac{\lambda_{2} - \lambda_{3}}{\lambda_{1}} \quad S_{\lambda} = \frac{\lambda_{3}}{\lambda_{1}}$$

$$Eigenentropy-based scale selection$$
[Weinmann et al., PCV 2014]
$$k_{\min} = 10 \quad \Rightarrow \text{ Idea: favor the minimal disorder}$$

$$k_{\max} = 100$$

$$\Delta k = 1$$

$$E_{\lambda} = -\lambda_{1} \ln(\lambda_{1}) - \lambda_{2} \ln(\lambda_{2}) - \lambda_{3} \ln(\lambda_{3})$$

$$\mathbf{k} = 1 \qquad E_{\lambda} = -\lambda_1 \ln(\lambda_1) - \lambda_2 \ln(\lambda_2) - \lambda_3 \ln(\lambda_3)$$

Recovery of local 3D neighborhoods

- Multi-scale neighborhood e.g. [Niemeyer et al., IJPRS 2014]
 - → Consider local 3D structure at different scales
 - → Describe geometric behavior across different scales
- Multi-scale, multi-type neighborhood
 e.g. [Blomley et al., ISPRS Congress 2016]
 - → Consider local 3D structure at different scales
 - → Describe geometric behavior across different scales and different neighborhood types

- Multi-scale, multi-type neighborhood
 e.g. [Blomley et al., ISPRS Congress 2016]
 - → Consider local 3D structure at different scales
 - → Describe geometric behavior across different scales and different neighborhood types

- **Eigenvalue-based features** $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge 0$
 - → Linearity: L_λ = $\frac{\lambda_1 \lambda_2}{\lambda_1}$ → Planarity: P_λ = $\frac{\lambda_2 \lambda_3}{\lambda_1}$
 - → Scattering: $S_{\lambda} = \frac{\lambda_3}{\lambda_1}$
 - → Omnivariance:
 - → Anisotropy: $A_{\lambda} = \frac{\lambda_1 \lambda_3}{\lambda_1}$
 - → Eigenentropy: $E_{\lambda} = -\sum_{i=1}^{3} \lambda_i \ln(\lambda_i)$

 $O_{\lambda} = \sqrt[3]{\lambda_1 \, \lambda_2 \, \lambda_3}$

- → Sum of eigenvalues: $\Sigma_{\lambda} = \lambda_1 + \lambda_2 + \lambda_3$
- → Change of curvature: $C_{\lambda} = \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3}$

Karlsruhe Institute of Technology

2. Methodology

Extraction of 3D features (8)

Dimensionality features

Martin Weinmann

Martin Weinmann

Extraction of more complex features

- 3D Shape Context descriptor [Frome et al., ECCV 2004]
- Signature of Histograms of OrienTations (SHOT) descriptor
 [Tombari et al., ECCV 2010]
- Point Feature Histograms (PFHs) [Rusu et al., ICRA 2009]
- Shape Distributions
 [Osada et al., 2002]

Relevant, irrelevant and redundant features

- Selection of "suitable" features
 - Filter-based methods
 - → Classifier-independent
 - \rightarrow Simple and efficient
 - → Consideration of intrinsic properties of the given (training) data
 - \rightarrow Different criteria
 - Alternative strategies:
 - → Wrapper-based methods
 - → Embedded methods

- Filter-based methods
 - Univariate methods
 - → "Evaluate" feature–class relations

- Correlation coefficient

 $c_{\text{Pearson}}(\mathbf{x}_i) = rac{\text{Cov}(\mathbf{x}_i, \mathbf{l})}{\sigma(\mathbf{x}_i) \cdot \sigma(\mathbf{l})}$

- Multivariate methods
 - → "Evaluate" feature–class relations and feature–feature relations
 - Correlation-based Feature Selection [Hall, 1999]

$$R(X_{1\dots n}, C) = \frac{n\bar{\rho}_{XC}}{\sqrt{n + n(n-1)\bar{\rho}_{XX}}}$$

Individual classification

Learning principle	Involved classifiers
Instance-based learning	- Nearest Neighbor (NN) classifier
Rule-based learning	- Decision Tree (DT)
Probabilistic learning	- Naïve Bayesian (NB) classifier - Linear Discriminant Analysis (LDA) - Quadratic Discriminant Analysis (QDA)
Max-margin learning	- Support Vector Machine (SVM)
Ensemble learning	- Random Forest (RF) - Random Fern (RFe) - AdaBoost (AB)
Deep learning	- Multi-Layer Perceptron (MLP)

- 1. Introduction
- 2. Methodology
- 3. Experimental Results
- 4. Conclusions & Future Work

3. Experimental Results

- *Oakland 3D Point Cloud Dataset* [Munoz et al., 2008, 2009]
 - 5 semantic classes: Wire, Pole/Trunk, Façade, Ground, Vegetation

	Training	Validation	Test
# 3D points	ි 5,000	91,515	1,324,310
Min. class size	1,000	899	3,794
Max. class size	11,000	67,419	934,146

Reduction of training data

3. Experimental Results

A. Insights w.r.t. the selection of optimal neighborhoods

- B. Impact of optimal neighborhood size selection
- C. Impact of the selection of relevant features
- D. Extension towards data-intensive processing

3. Experimental Results (A)

Oakland 3D Point Cloud Dataset

Distribution of k across all 3D points of the dataset:

3. Experimental Results (A)

GEOBIA 2016 Doctoral Colloquium 13 September 2016

Martin Weinmann

3. Experimental Results

- A. Insights w.r.t. the selection of optimal neighborhoods
- B. Impact of optimal neighborhood size selection
- C. Impact of the selection of relevant features
- D. Extension towards data-intensive processing

M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet (2015): Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 105, pp. 286-304.

M. Weinmann, B. Jutzi, and C. Mallet (2014): Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3, pp. 181-188.

3. Experimental Results (B)

- *Oakland 3D Point Cloud Dataset*, all 21 low-level features:
 - Feature extraction based on different neighborhood definitions

Classification: *Random Forest* (100 decision trees)

Mean class recall:	\mathcal{N}	Wire	Pole/Trunk	Façade	Ground	Vegetation	
70.78	\mathcal{N}_{10}	70.46	68.49	50.29	98.23	66.45	
74.65	\mathcal{N}_{25}	69.48	69.59	60.98	98.91	74.29	
72.72	\mathcal{N}_{50}	56.86	62.64	68.13	98.84	77.10	
69.99	\mathcal{N}_{75}	49.71	58.63	67.51	98.81	75.31	Recall
68.51	\mathcal{N}_{100}	49.67	58.27	62.69	98.71	73.20 (Completeness)
81.70	$\mathcal{N}_{\text{opt,dim}}$	85.16	78.90	65.90	98.52	79.99	
82.59	$\mathcal{N}_{\text{opt},\lambda}$ <	86.05	79.99	67.01	98.48	81.41	>
		Wire	Pole/Trunk	Facada	Ground	Vacatation	_
Overall accuracy:	\mathcal{N}			Façade		Vegetation	
87.53	\mathcal{N}_{10}	5.51	7.99	77.62	96.82	94.79	
90.50	\mathcal{N}_{25}	7.12	9.46	83.88	98.58	94.87	
91.54	\mathcal{N}_{50}	4.81	19.47	83.43	97.77	94.40	Draginian
91.06	\mathcal{N}_{75}	4.00	18.25	80.28	97.86	93.84	Precision
90.16	\mathcal{N}_{100}	3.98	13.55	76.19	97.92	93.55	(Correctness)
91.89	$\mathcal{N}_{\mathrm{opt,dim}}$	7.98	22.09	83.71	97.67	94.97	
92.25	$\mathcal{N}_{\text{opt},\lambda}$ <	9.03	24.13	84.69	97.18	95.87	>

3. Experimental Results (B)

• *Oakland 3D Point Cloud Dataset*, all 21 low-level features:

\mathcal{N}	NN	DT	NB	LDA	QDA	SVM	RF	RFe	AB	MLP
\mathcal{N}_{10}	73.86	65.64	78.88	87.38	78.93	82.93	87.53	81.94	86.78	80.54
\mathcal{N}_{25}	86.25	69.30	83.64	90.08	83.62	88.88	90.50	88.77	89.99	78.59
\mathcal{N}_{50}	88.89	75.47	85.03	92.83	84.95	92.00	91.54	90.42	91.80	85.68
\mathcal{N}_{75}	89.97	76.87	85.00	93.05	84.99	91.99	91.06	91.16	90.56	87.07
\mathcal{N}_{100}	89.90	84.45	84.33	92.60	84.43	91.76	90.16	90.59	87.01	84.39
$\mathcal{N}_{\mathrm{opt,dim}}$	79.34	70.71	83.75	91.01	83.80	<u>90 1</u> 5	91.89	90.12	91.62	85.69
$\mathcal{N}_{\text{opt},\lambda}$	79.87	75.76	85.63	90.39	85.69	89.10	92.25	90.45	92.28	87.29

• Overall accuracy:

Mean class recall:

\mathcal{N}	NN	DT	NB	LDA	QDA	SVM	RF	RFe	AB	MLP
\mathcal{N}_{10}	63.40	54.19	62.29	70.68	62.33	58.86	70.78	63.75	67.52	64.20
\mathcal{N}_{25}	70.01	57.41	68.46	75.54	68.47	68.50	74.65	71.48	68.64	68.03
\mathcal{N}_{50}	69.47	59.99	67.12	72.76	66.98	68.47	72.72	69.22	71.46	69.13
\mathcal{N}_{75}	68.29	57.82	65.49	73.05	65.44	68.00	69.99	68.88	68.19	70.47
\mathcal{N}_{100}	66.66	57.96	63.44	72.35	63.46	64.76	68.51	67.16	59.58	68.98
$\mathcal{N}_{\mathrm{opt,dim}}$	74.17	62.15	74.49	81.36	74.35	79.58	81.70	78.35	77.63	78.61
$\mathcal{N}_{\mathrm{opt},\lambda}$	73.98	66.99	76.19	82.05	76.15	79.97	82.59	78.70	79.49	79.92

GEOBIA 2016 Doctoral Colloquium 13 September 2016

Martin Weinmann

M. Weinmann, B. Jutzi, and C. Mallet (2014): Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3, pp. 181-188.

M. Weinmann, B. Jutzi, and C. Mallet (2014): Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3, pp. 181-188.

M. Weinmann, B. Jutzi, and C. Mallet (2014): Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3, pp. 181-188.

3. Experimental Results (B)

	Proces	sing tin	ne for t	raining	and te	esting:				
Time	NN	DT	NB	LDA	QDA	SVM	RF	RFe	AB	MLP
t _{train} [s]	00.00	0.11	0.01	0.05	0.07	1.39	0.44	0.03	6.20	2.28
t_{train} [%]	00.00	24.54	3.13	10.74	15.18	317.19	100.00	6.96	1410.66	518.13
t_{test} [s]	167.52	0.65	3.71	4.45	3.92	319.48	6.33	8.12	76.31	1.80
t_{test} [%]	2645.77	10.22	58.64	70.34	61.96		100.00	128.22	1205.24	28.45
		-			ľ					
	Overal	l accura	асу:					Par	ameter-	luning
\mathcal{N}	NN	DT	NB	LDA	QDA	SVM	RF	RFe	AB	MLP
\mathcal{N}_{10}	73.86	65.64	78.88	87.38	78.93	3 82.93	87.53	81.94	86.78	80.54
\mathcal{N}_{25}	86.25	69.30	83.64	90.08	83.62	2 88.88	90.50	88.77	89.99	78.59
\mathcal{N}_{50}	88.89	75.47	85.03	92.83	84.93	5 92.00	91.54	90.42	91.80	85.68
\mathcal{N}_{75}	89.97	76.87	85.00	93.05	84.99	9 91.99	91.06	91.16	90.56	87.07
\mathcal{N}_{100}	89.90	84.45	84.33	92.60	84.43	91.76	90.16	90.59	87.01	84.39
$\mathcal{N}_{\mathrm{opt,dim}}$	79.34	70.71	83.75	91.01	83.80	90.15	91.89	90.12	91.62	85.69
$\mathcal{N}_{\mathrm{opt},\lambda}$	79.87	75.76	85.63	90.39	85.6	9 89.10	92.25	90.45	92.28	87.29

3. Experimental Results

A. Insights w.r.t. the selection of optimal neighborhoods

- B. Impact of optimal neighborhood size selection
- C. Impact of the selection of relevant features
- D. Extension towards data-intensive processing

M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet (2015): Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 105, pp. 286-304.

M. Weinmann, B. Jutzi, and C. Mallet (2013): Feature relevance assessment for the semantic interpretation of 3D point cloud data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W2, pp. 313-318.

3. Experimental Results (C)

- Oakland 3D Point Cloud Dataset
 - Feature extraction based on different neighborhood definitions
 - Feature selection:
 - \rightarrow All features (21)
 - \rightarrow Dimensionality features (3)
 - → Eigenvalue-based 3D features (8)
 - \rightarrow 5 best-ranked features according to [Weinmann et al., 2013] (5)
 - → Correlation-based Feature Selection [Hall, 1999] (12-16)
 - → Fast Correlation-Based Filter [Yu & Liu, 2003] (6-9)
 - → *Minimal-Redundancy-Maximal-Relevance* [Peng et al., 2005] (10)
 - Classification: *Random Forest* (100 decision trees)

GEOBIA 2016 Doctoral Colloquium 13 September 2016

Martin Weinmann

3. Experimental Results (C)

	verall acci	uracy:					1
\mathcal{N}	$\mathcal{S}_{\mathrm{all}}$	$\mathcal{S}_{ ext{dim}}$	$\mathcal{S}_{\lambda,\mathrm{3D}}$	\mathcal{S}_5	$\mathcal{S}_{ ext{CFS}}$	$\mathcal{S}_{ ext{FCBF}}$	$S_{\rm mRMR}$
\mathcal{N}_{10}	87.50	58.36	74.33	85.66	87.43	87.29	82.11
\mathcal{N}_{25}	90.78	68.80	82.48	89.60	90.59	91.78	84.70
\mathcal{N}_{50}	91.64	73.19	81.38	91.01	91.71	92.69	85.64
\mathcal{N}_{75}	91.00	73.63	80.12	90.24	91.17	91.47	85.99
\mathcal{N}_{100}	90.11	72.99	81.96	89.84	90.31	90.94	85.76
$\mathcal{N}_{\mathrm{opt,dim}}$	91.92	69.59	77.69	91.41	91.83	91.55	86.82
1 /					~~~~		
$\mathcal{N}_{\mathrm{opt},\lambda}$	92.28 lean class	63.61 recall:	84.88	91.44	92.27	92.78	84.28
•	lean class	recall:					
■ M N			$\frac{\mathcal{S}_{\lambda,3\mathrm{D}}}{59.95}$	$\begin{array}{c} 91.44 \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \hline \\ \\ \\ \\$	$\frac{\mathcal{S}_{\text{CFS}}}{69.28}$	92.78 <u>S_{FCBF}</u> 70.08	
	lean class $\mathcal{S}_{\mathrm{all}}$	recall: $\mathcal{S}_{ ext{dim}}$	$\mathcal{S}_{\lambda,\mathrm{3D}}$	\mathcal{S}_5	$\mathcal{S}_{ ext{CFS}}$	$\mathcal{S}_{ ext{FCBF}}$	$\mathcal{S}_{ m mRMR}$
■ M <u>N</u> <u>N</u> 10	ean class $\frac{S_{all}}{70.83}$	<i>recall</i> : <u> <i>S</i>_{dim}</u> 48.41	$\frac{\mathcal{S}_{\lambda,3\mathrm{D}}}{59.95}$	$\frac{S_5}{58.24}$	S _{CFS} 69.28	<i>S</i> _{FCBF} 70.08	<i>S</i> _{mRMR} 62.46
$\begin{array}{c} \bullet \\ \mathcal{N} \\ \mathcal{N}_{10} \\ \mathcal{N}_{25} \end{array}$	ean class S_{all} 70.83 75.48	<i>recall</i> : <i>S</i> _{dim} 48.41 55.68	$\frac{\mathcal{S}_{\lambda,3\mathrm{D}}}{59.95}$ 65.22	$\frac{S_5}{58.24}$ 73.30	$\frac{\mathcal{S}_{\text{CFS}}}{69.28}$ 74.24	$\frac{\mathcal{S}_{\text{FCBF}}}{70.08}$ 76.58	S _{mRMR} 62.46 63.61
■ M <u>N</u> <u>N</u> 10 <u>N</u> 25 <u>N</u> 50	lean class <u>S_{all}</u> 70.83 75.48 72.71	<i>recall</i> : <u>S_{dim}</u> 48.41 55.68 54.41	$\frac{S_{\lambda,3D}}{59.95}$ 65.22 64.43	$rac{\mathcal{S}_5}{58.24}$ 73.30 65.91	$\frac{S_{\rm CFS}}{69.28} \\74.24 \\72.64$	$rac{\mathcal{S}_{\text{FCBF}}}{70.08}$ 76.58 74.14	S _{mRMR} 62.46 63.61 60.90
■ M N N10 N25 N50 N75 N100	<i>S</i> all 70.83 75.48 72.71 69.75	<i>recall</i> : <u>S_{dim}</u> 48.41 55.68 54.41 52.12	$\frac{S_{\lambda,3D}}{59.95} \\ 65.22 \\ 64.43 \\ 61.37$	$rac{\mathcal{S}_5}{58.24}$ 73.30 65.91 59.86	$\frac{S_{\rm CFS}}{69.28} \\74.24 \\72.64 \\70.19$	$\frac{\mathcal{S}_{\rm FCBF}}{70.08} \\ 76.58 \\ 74.14 \\ 68.66$	\mathcal{S}_{mRMR} 62.46 63.61 60.90 58.35
■ M <u>N</u> <u>N</u> 10 <u>N</u> 25 <u>N</u> 50 <u>N</u> 75	<i>Ean class</i> <i>S</i> _{all} 70.83 75.48 72.71 69.75 68.49	<i>recall</i> : <u>S_{dim}</u> 48.41 55.68 54.41 52.12 50.33	$S_{\lambda,3D}$ 59.95 65.22 64.43 61.37 61.37	$\frac{S_5}{58.24} \\ 73.30 \\ 65.91 \\ 59.86 \\ 60.22$	$\frac{S_{\rm CFS}}{69.28} \\74.24 \\72.64 \\70.19 \\69.02$	$\frac{\mathcal{S}_{\text{FCBF}}}{70.08} \\ 76.58 \\ 74.14 \\ 68.66 \\ 66.34$	\mathcal{S}_{mRMR} 62.46 63.61 60.90 58.35 56.05

3. Experimental Results

- A. Insights w.r.t. the selection of optimal neighborhoods
- B. Impact of optimal neighborhood size selection
- C. Impact of the selection of relevant features
- D. Extension towards data-intensive processing

M. Weinmann, S. Urban, S. Hinz, B. Jutzi, and C. Mallet (2015): Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas. Computers & Graphics, Vol. 49, pp. 47-57.

Paris-rue-Madame Database:

- → 20M points
- → Overall accuracy: 89.03%
- → Mean class recall: 84.14%

Paris-rue-Cassette Database:

→ 12M points
 → Overall accuracy: 89.52%
 → Mean class recall: 81.46%

- 1. Introduction
- 2. Methodology
- 3. Experimental Results
- 4. Conclusions & Future Work

- Semantic interpretation of 3D point cloud data
 - Selection of individual 3D neighborhoods of optimal size
 - \rightarrow Significant improvement of classification results
 - Selection of relevant features
 - \rightarrow Increase in efficiency w.r.t. processing time and memory consumption
 - Extension towards large-scale 3D scene analysis
 - → Parallelized data processing

\rightarrow Segmentation / clustering

Outlook

- → Spatial context
- Large-scale 3D scene analysis on point level and on object level
 - \rightarrow >100M points
 - \rightarrow Complex environments
 - → Many classes of interest
 - \rightarrow Class hierarchies

Extended 3D scene analysis up to object level

4. Conclusions & Future Work

- Outlook
 - Tree detection, segmentation and localization (\rightarrow IQmulus)
 - → Binary classification ("tree" vs. "non-tree")
 - \rightarrow Tree individualization via segmentation

- Outlook
 - Tree detection, segmentation and localization (\rightarrow IQmulus)
 - → Binary classification ("tree" vs. "non-tree")
 - → Tree individualization via segmentation

M. Weinmann, C. Mallet, and M. Brédif (2016): Detection, segmentation and localization of individual trees from MMS point cloud data. Proceedings of the International Conference on Geographic Object-Based Image Analysis (GEOBIA), pp. 1-8.

Outlook

Tree detection, segmentation and localization (\rightarrow IQmulus)

- → Binary classification ("tree" vs. "non-tree")
- \rightarrow Tree individualization via segmentation

M. Weinmann, C. Mallet, and M. Brédif (2016): Detection, segmentation and localization of individual trees from MMS point cloud data. Proceedings of the International Conference on Geographic Object-Based Image Analysis (GEOBIA), pp. 1-8.

