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GEOBIA 2016 Doctoral Colloquium - 12-13 September 2016

Earth observation big data pre-preprocessing and analysis in
operating mode: OBIA system design, process and outcome
innovations

(“In general, process is easier to measure, outcome is more important”,
Measurement: Process and Outcome Indicators, Duke Center for Instructional
Technology, 2016.)
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GEOBIA 2016 Doctoral Colloquium - 12-13 September 2016

Recommended topics of interest:

» Big Earth data: pre-classification and integrated workflow strategies -
= OBIA-specific change detection and accuracy assessment -
= |ncreasing classification transferability and OBIA operationalization -

= 3D data processing and object generation



Intro - What is (human) vision? To be mimicked by computer vision.

(2-D) Image < 3-D to 2-D sensory data
dimensionality reduction (e.g., occlusion).

(3-D) Scene in the (4-D)
World-through-time

)

Semantic information/

Physical information/ continuous _categorical variables:
variables: Sensory, quantitative, Qualitative, symbolic (semantic),
sub-symbolic (non-semantic), Imaging understanding system subjective, abstract, Vague.; but

objective, but varying sensations (inducer, e.g., human visual system) stable percepts: (4-D) object-

models-throuih-time (concepts)

3. Plausible symbolic ‘
description(s) of the
‘ (3-D) scene, in user-
speak

Context-insensitive (color) Context-sensitive (e.g., texture, geometry, morphology)

’ 1. Sub-symbolic (2-D)

image features: points,
lines and polygons with no

semantic meaning, in
techno-speak

2. Semi-symbolic
pixels, polygons
and multi-part

9/13/2016



Intro - Interdisciplinary cognitive science

Cognitive science

Info-as-interpretation
Info-as-thing

—>

Computer vision (=
image understanding)

Philosophical

hermeneutics,
Genetic epistemology
(e.g., Piaget)

Remote Sensing
Info-as-interpretation
Info-as-thing
From continuous raster
sub-symbolic data to

discrete vector symbolic
information

Photo-
grammetry

Induction / Bottom-up /
Data-driven / Statistical-
model driven

Machine
learning
9/13/2016

Uppersbound

Hybrid (deductive and
inductive) inference

Deduction / Top-down /
Prior (physical) Model-
driven

Artificial
Intelligence (Al)




Intro - Spatiotemporal information dominates color information in the (4D) world and in (2D) images

Fact: human chromatic and achromatic visions are nearly as effective in scene-from-image representation

1. Spatiotemporal information dominates color information in both [8]:

l. the 4D world-through-time domain (scene-domain).
IIl.  The (2D) image domain < OBIA paradigm [56], also refer to (Adams et al., 1995) [55].

Experimental proof that primary spatial information is thoroughly investigated by a CV system for scene-from-image representation:

Seamless (near lossless) scalability of a CV system from color to panchromatic image analysis ought to be considered mandatory:.

Image non-contextual information: color. It is the only visual information available at pixel resolution! Easy to deal with...

3.  Image contextual information.
l. Texture = visual effect generated by the spatial distribution of texture elements (texels) = superpixels = connected sets of pixels featuring the same color name.

I. Geometric (shape) and size properties of image-objects = Marr’s zero-crossing segments < polygons (OGC) [58].

M. Inter-object spatial relationships.
. Topological, e.g., inclusion, adjacency.
. Non-topological, e.g., metric distance, inter-angle measure.

4, Non-spatial semantic relationships, e.g., part-of, subset-of. Impossible to learn from (sub-symbolic) sensory data with machime learning-from-data approaches.



Intro: Visual illusions - Mach bands

Mach band illusion

One of the best-known brightness illusions (where
brightness is defined as the subjective / perceived
luminance of a surface) is the psychophysical
phenomenon of the Mach bands: where a
luminance (radiance, intensity) ramp meets a

plateau, there are spikes of brightness, although
there is no discontinuity in the luminance profile.

As a consequence, human vision detects two ot :
igh A

boundaries, one at the beginning and one at the
end of the ramp in luminance.

B”ghtness

“If we require that a brightness model should at

least be able to predict Mach bands, the bright dark
and dark bands which are seen at ramp edges, Distance from left edge
the number of published models is surprisingly CONCLUSION: traditional local contrast (gradient of I, | ¢ 6G/ 0x )

small” (Pessoa, 1996) [32] with thresholding IS NOT consistent with the Mach band effect.




Intro: Process (P) and outcome (O) quantitative quality indicators (Q?ls) + & (degree of tolerance) — QA4EQ Val

Fact 1: A minimally dependent and maximally informative (mDMI) set of Q2ls must be community-agreed upon.

Fact 2: Every P-Q2l and/or 0O-Q?l must be provided with its degree of tolerance in measurement.
Definition: To be considered in operating mode, an information processing system must score “High” in every Q2.

Process Q2ls and Outcome QZIs + & — QA4EOQ Val
Degree of automation (P): (a) number, physical meaning and range of variation of user-defined
parameters, (b) collection of the required training data set, if any.
Effectiveness (0): for example, (a) thematic Qis (TQIs) and (b) spatial Qis (SQIs), provided with a
degree of uncertainty in measurement +3.
Semantic information level (P)
Efficiency (P): for example, (a) computation time and (b) memory occupation.
Robustness to changes in input image (P), e.g., large spatial extent data mapping (no toy problems).
Robustness to changes in input parameters (P), e.g., sensitivity analysis.

Scalability to changes in the sensor’s specifications or user’s needs (P), e.g., panchromtc/chrmtc.

Timeliness (P), from data acquisition to high-level product generation, increases with manpower and
computing power.

Costs (P), increasing with manpower and computing power.

Legend of fuzzy sets of a quantitative variable.

Example: System 1

This system is NOT in operating mode



Definition: Big data (en.wikipedia.org/wiki/Big_data)

“Big data requires exceptional technologies to efficiently process large quantities of data within tolerable
elapsed times... The challenges include capture, curation, storage, search, sharing, transfer, analysis
and visualization... What is considered "big data" varies depending on the capabilities of the organization
managing the set, and on the capabilities of the applications that are traditionally used to process and
analyze the data set in its domain... Real or near-real time information delivery is one of the defining
characteristics of big data analytics.”

Definition: EO Level 2 product (Sentinel-2 User Handbook, ESA, 2015)

1. A multi-spectral (MS) image corrected for:

l.  Absolute calibration: digital numbers (DNs) = Top-of-atmosphere (TOA) radiance = TOA reflectance (TOARF).

IIl.  Atmospheric effects.

lIl. Topographic effects (requires a Digital Surface Model, DSM, in addition to sensory data).

IV. Adjacency effects = Bottom-of-atmosphere (BOA) reflectance (BOAR) = SURF values.

2. Ascene classification map (SCM).

l.  8-class Dichotomous Phase of the Food and Agriculture Organization of the United Nations (FAO) - Land Cover
Classification System (LCCS) taxonomy: (i) vegetation / non-vegetation, (ii) terrestrial / aquatic, (iii) Managed / natural
semi-natural [4].

IIl. Cloud/ Cloud-shadow quality layers.



Intro: FAO Land Cover Classification System (LCCS) taxonomy

» FAO-LCCS: Dichotomous Phase (DP)

. 3-level 2-4-8 dichotomous land cover
“EASY” DP Dichotomous phase classes, APPLICATION INDEPENDENT!

layers - Very

substantial A B

contribution by ‘ W W
pixel-based MS

reflectance = 2 2 =
polyhedralization
1 2 3 4 5 6 7 8

,

F

DIFFICULT DP layer.
Managed / Natural,
semi-natural

35¥Hd SNOWOLOHDIO

= - - - . . features high-level
nan:]s;ncg Izrg” iaces | e e | VAR wne | S5 | imeceldwititiey - SEMANTICS!
SIAM’s A. Primarily vegetated
A11 cultivated and managed terrestrial areas (agricultural fields) _
A12 natural and semi-natural terrestrial vegetation (e.g., forest) }

A23 cultivated aquatic or regularly flooded areas

A24 natural and semi-natural aquatic or regularly flooded vegetation
B. Primarily non vegetated _
B35 F(\)rttéf)icial surfaces and associated areas (roads, built-up, impervious surfaces, e.g., parking _
B36 bare areas (non agricultural fields) _
B47 artificial waterbodies, snow and ice _
B48 natural water bodies, snow and ice B

* FAO-LCCS Modular Hierarchical Phase (MHP), consisting of a hierarchical battery of one-class LC classifiers




EO Problem identification

Fact 1
To date no EO data-derived Level 2 prototype product has ever been generated systematically at the ground segment (Sentinel-2

User Handbook, ESA, 2015)<> The Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015,
subject to the Cal/Val requirements of the Quality Assurance Framework for Earth Observation (QA4EO) guidelines, has not been
accomplished yet. GEOSS is expected to systematically transform multi-source EO “big data” into timely, comprehensive and operational
information products. Fact: the percentage of EO data ever downloaded from the European Space Agency (ESA) databases is
estimated at about 10% or less. Conclusion: the RS community is overwhelmed by EO data...

Fact 2

To date no semantic content-based image retrieval (SCBIR) system exists in operating mode. SCBIR = traditional CBIR whose queries
are input with text information, summary statistics or by either image, object or multi-object examples.

Fact 3

If we require that a computational vision model should at least be able to predict Mach bands, the bright and dark bands which are seen at
ramp edges, the number of published models is surprisingly small (Pessoa, 1996).

Fact 4
Chromatic and achromatic primate visions are nearly as effective in scene-from-image representation. It means that spatial information

dominates color information in the 2D image-domain and in the 4D spatiotemporal scene-domain. Experimental proof that primary
spatial information is thoroughly investigated by a CV system: Seamless scalability from color to panchromatic image analysis.

Fact 5
In general, “process is easier to measure, outcome is more important”. (Measurement: Process and Outcome Indicators, Duke Center for
Instructional Technology, 2016).



State-of-the-art: EO CBIR systems, supporting no semantic querying

USGS Home
Contact USGS
Search USGS

science for a changing world

| -
mage querying by:

Collection Resolution Map Layers Tools File Hel . . « e, .
. e 3 * metadata text information (acquisition time,

':|| Downloadable

target geographic area).
* Summary statistics (e.g., image-wide cloud
cover).

* No semantic content-based
querying of images

* No spatiotemporal image-
content extraction to generate
either quantitative or qualitative
information products, e.g., cloud
cover map.

-

[l ' Il [»]
WRs-2 | [ l—
Path 1Row:i1g2 i2? &
::g:lg.‘d?.at |12.5 Go

ax Lloua: ?
e ©G)

Scene Information:

1D: LCE1920272014170LGNOD
CC:52% Date: 2014/6/19
Qity: 9 Product OLI TIRS LT

Jun |vi2014 ‘v| Go |

Prev Scene | HNext Scene

Landsat 8 OLI Scene List

Add [ Detete |
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Project requirements specification: EO image understanding for semantic querying (EO-IU4SQ)

1) EO-IU subsystem. Systematic generation of EO Level 2 products in operating mode (all OP-Q?ls
must score “high”) at the ground segment. Never done before!
» EO data pre-processing: Automated stratified atmospheric and topographic correction.
» SCM legend = 3-level 8-class FAO-LCCS Dichotomous Phase.
» Hybrid inference design: Alternate deductive/ top-down/ learning-by-rule/ physical data models
with inductive/ bottom-up/ learning-from-data/ statistical data models.
» Feedback loops, to enforce stratified data sampling.
» Hierarchical multi-stage convergence-of-evidence approach. Visual features are:
o0 Color values = Categorical color names.
O Local shape.
O Texture = spatial distribution of texels = superpixels = connected sets of pixels with the
same color name.
O Inter-object spatial topological and non-topological relationships.
2) EO-SQ subsystem. Semantic querying of large-scale EO image databases = Semantic content-
based image retrieval (SCBIR) = traditional CBIR by metadata text information, summary statistics or
by either image, object or multi-object examples.



R&D Project objectives: EO image understanding (EO-IU) for semantic querying (EO-1U4SQ) system

1. Develop systematic (large spatial extent, coarse-to-fine spatial resolution) automated (without user-interaction) near real-
time multi-source EO data-derived Level 2 products, subject to Cal/Val in compliance with the intergovernmental Group on
Earth Observations (GEO) - Quality Assurance Framework For EO (QA4EOQ) guidelines < GEO - Global Earth Observation
System of Systems (GEOSS) for Image Understanding (GEOSS-IU) in operating mode.

Fact 1: To date no EO data-derived Level 2 prototype product has ever been generated systematically at the ground segment
[3]. DEF. Level 2 product = Image corrected for atmospheric, topographic and adjacency effects + Scene Classification Map
(SCM).
2. Novel semantic content-based EO image retrieval (SCBIR) in operating mode. Fact 2: to date no SCBIR exists.
»  SCBIR = traditional CBIR, employing image query-by-text, summary statistics or by image-example.
> Level 2 qualitative (categorical) outcome,
Level 2 quantitative outcome, Multi-source EO EO image-derived thematic maps, e.g.,
image, subject to Cal, DNs — BOAR FAO-LCCS, subject to Val
. —w EO-lIU automated near real-time = .-

process, subject to Val

SCBIR process, subject to Val
GOAL: EO-IU + SCBIR in operating mode = EO-1U4SQ (Unina & Univ. Salzburg)




Intro - State-of-the-art (knowledge boundary): Object-based image analysis (OBIA) as a
new scientific paradigm

1. OBIAis alternative to pixel-based image analysis (p. 187) = 1D and Non-contextual image analysis — 1D image analysis.

2. Fundamental tenants (guiding principles) of (GE)OBIA (p. 185). (i) data are Earth (Geo) centric, (i) its analytical methods are multi-
source capable, (i) geo-object-based delineation is a pre-requisite, (iv) its methods are contextual, allowing for ‘surrounding’ information
and attributes, and (v) it is highly customizable or adaptive allowing for the inclusion of human semantics and hierarchical networks (it
incorporates ‘the wisdom of the user’).

3. Many consider that the ultimate benchmark of GEOBIA is the generation of results equalling or better than human perception, which is
far from trivial to numerically quantify and emulate... While biophysical principles like retinal structure and functioning and singular
processes such as the cerebral reaction are analytically known, we still lack the bigger ‘picture’ of human perception as a whole (p. 185).

4. In GEOBIA, image segmentation is not an end in itself. Segmentation is the partitioning of an array of measurements on the basis of
“homogeneity”. It divides an image — or any raster or point data — into spatially continuous, disjoint and homogeneous regions referred to
as ‘segments’ (p. 186).

PROBLEMS at the very foundation of (GE)OBIA: Underestimation of the complexity of human vision/perception

| Vecera and Farah (Human vision, 1997) [62]: “we have demonstrated that image segmentation as the dual problem of image-
contour detection is an inherently ill-posed problem [63] in the Hadamard sense [53]. It can be influenced by the familiarity of the
shape being segmented”, “these results are consistent with the hypothesis that image segmentation is an interactive (hybrid
inference) process” “in which top-down knowledge partly guides lower level processing”.

II.  OBIAtolerates a 1D context-sensitive image analysis approach as opposed to a 1D context-insensitive image analysis approach.

CONCLUSIONS

A. Image segmentation / contour detection is an ill-posed problem requiring hybrid (combined deductive/top-down and
inductive/bottom-up) inference mechanisms.

B. OBIA should be intended as a synonym of 2D image analysis, based on retinotopic/topology-preserving feature maps.




Intro - Traditional 1D image analysis (spatial topological and/or non-topological info is
lost) o Pixel-based analysis (spatial topological and non-topological info is lost)

N

Dali's “Gala contemplating the Pnchrmtc image. Median filter, 35 x 35 2D grid, 35 x 35 pixels
Mediterranean Sea” at 20 mtr pixels

becomes the Lincln portrait, RGB o _ _ _ _ _
image, ~ 18 x 13 = 234 Dali’'s 1D image analysis is invariant to permutations in the input sequence, i.e.,
square, 504 x 669 digital pixels insensitive to changes in the order of presentation of the input sequence!

1D image analysis = vector sequence / vector series analysis, where each vector data is either a pixel or context-sensitive
CETT DLl LT T TR T T T | 7171 [ LT | | TN | [T T I‘T‘-_#l

Order of presentation in the input vector sequence

1D image analysis, top 5 lines in the gridded image, spatial unit = local window 35 x 35 pixels in size (patch-based =
context-based) ~ pixel-based image analysis = context-insensitive, insensitive to spatial topological info.
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Intro - Traditional 1D image analysis (spatial topological and/or non-topological info is

lost) o Pixel-based analysis (spatial topological and non-topological info is lost)

1D image analysis is invariant to permutations in the input sequence, i.e.,
insensitive to changes in the order of presentation of the input sequence!

Order of presentation in the input vector sequence

1D image analysis consistent with the context-sensitive OBIA paradigm = 1D sequence of image-objects = context-
sensitive = sensitive to non-topological spatial info, insensitive to spatial topological info.

* Within context, e.g., local window, spatial non-topological info is investigated, e.g., local histogram of gray values.
* Spatial non-topological info (e.g., angle measures, distance measures) is preserved within image-object.

* Inter-object spatial non-topological relationships (e.g., angle measures, distance measures) are LOST.

* Inter-object spatial topological relationships (e.g., adjacency, inclusion, etc.) are LOST.

16



Intro - (2D) image analysis (spatial topological and non-topological info are preserved) = Retinotopic
maps = Deep convolutional neural networks (DCNNs), alternative to traditional 1D image analysis
(spatial topological and/or non-topological info is lost) o Pixel-based analysis (spatial topological

and non-topological info is lost)

Layer 2 Layer 3

Input Layer 1
/ spatial
5 ; o Convolution layer Max-pooling layer

L

Input for
next layer

Features maps

Input image

Problem 1: DCNN design (meta)parameters (no. layers,

Complex Recepiive Simple  Compex g fegtures per layer, spatial filter size, spatial stride,

Complex Recepiive Simple rl
Field Cells Cells

Receptive Simple

Field Celis CEI]is Fielld Geus GeI:I_'s | I ) ] . ) ; ]
Profles S Cp PrFO;':s % G Ao S % spatial pooling size, spatial pooling stride) are user-
’ ’ defined based on heuristics!!

Problem 2: no foveated! All filters span the same visual
field. 17



Novel 6-stage hybrid feedback EO-IU subsystem of the EO-1U4SQ system

E.g., Cloud/Cloud-shadow
¢ ¢ classes I
(5
* =
o
Zero-stage RS E-L. F h i
i g Enhanced surface ourth-stage =
m'ultl-spectral spaceborne / categories stratified 2D %“
. Image pre- airborne Ms for object shape E]
RS multi- q i o ) =
processing image, e.g., stratified descriptors ~ S
spectral (image radiometrically topoeraphi Local shape 3
image enhancement): . calibra:ﬁd," P gc P f
. opographically <.
((Ii)i)a:tsr: c:b:: corrected, etc. correction t A Leve| 2 Cal/V4l MS g-
” i 'Imaégl r name =
[ @— §
¢ Texture 3
A 4 \ 4 "> e
Multi-level §
Ancillary data, pre- =
e.g., Digital classification Driven-by- i
Terrain Model maps into k 1 dy priven-by-
DTM MS color nowledge knowledge
((5 )('i texture
roun segmentation

control pointg
. maps

Multi-scale

Y
Low-level (pre-attentional) vision: raw primal sketch and full primal sketch (Marr, 1980).

1st-stage deductive pre-classification | 2nd-stage stratified segmentation >| 3rd-stage stratified texture seg
Semantic information gap to fill up, from sensory data to land Semantic information gap to fill up, from Semantic information gap to fill up, from
covers: info X% ~ 50%, due to prior knowledge in the pre- sensory data to land covers: info 2% + X%, sensory data to land covers: Y = 100 — Z% - X%.
classification expert system. where 2% 2 0 is due to prior semantic

knowledge, if any. 9/13/2016
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Automated hybrid feedback EO Level 2 image pre-processing — QA4EO Cal

Exoatmsphrc irradiance,

Atmsphrc
MS image sun-earth dstnc, sun ancillary MS master
PAN image parameters ~~~~~~~~~~~ mage 7 T
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Radiometric calibration of DNs into TOARF or SURF values: Triple advantage

1)

Mandatory to guarantee inter-image harmonization and inter-sensor operability by providing dimensionless DNs with a
community-agreed physical unit of measure.

Beneficial because DNs provided with a physical unit of measure can be input to physical data models as well as to
statistical data models. On the contrary, DNs provided with no physical unit of measure can be input to statistical data models
exclusively.

Beneficial because images radiometrically calibrated into TOARF or SURF values in range [0, 1] and coded as a 4-byte data
float can be compressed by a factor of 4 into a 1-byte char in range {0, 255} with a negligible quantization error = 0.2%.

If a 4-byte data float in range [0, 1] is quantized into a 1-byte integer in range {0, 255}, the float-to-byte quantization error is

(input value max - input value min) / number of quantization levels / 2 (because of the rounding error to the closest integer,
either above or below = (1 - 0) /256 / 2 = 0.00195 = 0.2%



Zoom-in-in Zero-stage for Level-2 image pre-processing: Example

Fig. A. Zoomed area of a Landsat 7 ETM+ image of Colorado, USA  Fig. B. Stratified topographic correction of Fig. A, based on a 16-
(path: 128, row: 021, acquisition date: 2000-08-09), depicted in false  class preliminary spectral map and the SRTM DEM.

colors (R: band ETMS5, G: band ETM4, B: band ETM1), 30m

resolution, radiometrically calibrated into TOA reflectance.

2/13/2016



Perceptual continuous color space discretization (quantization) <
Prior knowledge-based (deductive, top-down) color naming

L. D. Griffin, “Optimality of the basic
color categories for classification”, J.
R. Soc. Interface, vol. 3, pp. 71-85,
2006 [43]

RGB cube polyhedralization: prior polyhedra,
corresponding to RGB color names, can be
either convex or not, either connected or not.

Alternative color name categories on the
Munsell color array. The colored lines indicate
the boundaries of the eleven basic colors (BCs)
In human languages: black, blue, brown, grey,
green, orange, pink, purple, red, white, and
yellow.
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Color naming < Continuous color-space discretization

» (Discrete and finite) color names can be employed in a class-specific feature library suitable for use in prior
knowledge-based classification systems (S. Lang et al., Multiscale object feature library for habitat quality monitoring in
Riparian forests, IEEE TGRS, vol. 11, no. 2, pp. 559-563, 2014).

« Any mapping between color names and target classes of individuals, represented as a cross-tabulation matrix (either
non-square or square) where correct entries are marked as V, must be community agreed upon.

Class 1, Class 2, Tulip  Class 3, Italian
Water body flower tile roof

black
blue

brown
grey

|
[ ]
SIAM™ green -
orange
pink
purple
red -
white

yellow

23
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Run RGBIAM™ on a non-calibrated RGB image: multi-level color mapping

L 12 NN — _.J 2 .53 T
Fig. A. Top row. Quick-look RGB image and its RGBIAM color
quantization maps at 50 and 12 color levels respectively. contour maps generated from the two pre-

classification maps, plus their sum (at the

bottom left).
24



Run RGBIAM™ on a non-calibrated RGB image : piecewise-constant image approximation

Fig. A. Top line. Quick-look RGB (3-band, in the .jpg file format) image Fig. B. Bottom line. Vertical image profiles.
and its piecewise constant approximations, based on the RGBIAM maps
at 50 and 12 color levels respectively.

50 color levels, image-wide Root Mean Square Qntztn Error. 12 color levels, , image-wide Root Mean Square Qntztn Error.
Band: 1, Root Mean Square Qntztn Error: 15.261817 Band: 1, Root Mean Square Qntztn Error: 34.113970
Band: 2, Root Mean Square Qntztn Error: 16.468367 Band: 2, Root Mean Square Qntztn Error: 36.990855

Band: 3, Root Mean Square Qntztn Error: 17.292217 Band: 3, Root Mean Square Qntztn Error: 40.166423

25
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Run RGBIAM™ on a non-calibrated RGB image : vector quantization error estimation

Fig. A. Top line, center and left. Per-
pixel square quantization error sum
across bands, when the reconstructed
image, generated from the fine (center)
and coarse quantization levels (right), is
compared with the input image, shown
at the left side.

Input Histogram Output Histogram Input Histagram Output Histagrom

Fig. B. Square Error Sum, Basic Stats: Fig. B. Square Error Sum, Basic Stats:
Min = 0.0, Max = 21171.0, Mean = Min = 0.0, Max = 72979.0, Mean =
803.150923, Stdev = 1230.231361. 4145.427894, Stdev = 7967.770808.



* Inductive k-means vector quantization of a non-calibrated RGB image
* RGBIAM initialization of an inductive k-means vector quantizer (hybrid inference system)

Fig. B. Square Error Sum, Basic Stats:
Min = 0.0, Max = 6989.0, Mean =
| 306.877626, Stdev = 544.575772.

Top row. Left: Quick-look RGB image. Center: inductive k-means color quantization map, k = 49, Iterations = 3, random centroid initialization. Right:
Piecewise constant image reconstruction. Bottom left: Piecewise constant image reconstruction when the inductive k-means color quantization algorithm is
initialized by the RGBIAM’s 50 centers of color categories. The Root Mean Square Quantization Error decreases with the same number of vector
quantization levels k!!! Bottom right: Per-pixel square quantization error sum across bands, when the reconstructed image is compared with the input
image.



Prior knowledge-based SIAM™ decision-tree modeling of spectral envelopes

28

1st LEVEL OF ANALYSIS: SHAPE MODELING.
For a given spectral signature (e.g., Barren land), 2nd LEVEL OF ANALYSIS: INTENSITY MODELING.
model inter-band fuzzy relationships, e.g., TM5 > Spectral signature quantization through fuzzy sets, e.g.,
(TM4 10%). + Bright Barren Land and Dark Barren land .
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Top-of-atmosphere reflectance (%) o Surface reflectance
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3-band Greenness Index(R, NIR, MIR) oc Leaf Area Index (LAI)
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Intro: Inter-band correlation of continuous spectral (hyperspectral) imaging
SeNnsors (F. van der Meer and S.M. De John, Eds., Imaging Spectrometry, 2000)

High Inter-band Correlagtio Factor Loadings High Inter-band
1[0.35+0.75 pmy: Correlation 2 [0.75+1.5
Within Visible spectry .' : umj:
i = J Within NIR spectrum
o818
E 0& 1L
. § —+—f{actar 1
High Inter-band & 5, |/l o~ facior 2
- =o=factor 3

Correlation 2 [0.7§

Ay L,
EE) ) . [ =5a
E EL¥ - u|
* "+ - e e e 1 4 [ wm i g s
o

um]. E I: =1 s o TITTrT — :. 500 --_.‘_ 'Iﬁll'.'ll:l Remtaiat T iy T
Within NIR spectrum32 |

04 - P e

0.8
Wavelength (nm)

Correlation coefficients for the main factors resulting from a principal component analysis and factor rotation
for an agricultural data set based on spectral bands of AVIRIS spectrometers 1, 2 and 3. Flevoland test site,

July 5th 1991.
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First-stage SIAM™ cross-platform capabilities. Config.: Q-SIAM™. WorldView-2, 8-band, 2 m
resoltio, Brzilia, 2010-02-04, Zoomed area.

-

Fig. A. WV-2 Fig. B.TM
image, detail, SIA'M'
false colors, prehrpmary
histogram classification
stretching. map, detail.
: | Fig. D.
Fg. TCM SIAM™ binary
SIAM vegetation

contour map,

. map, detail.
detail.



First-stage well-posed two-pass connected-component multi-level image labeling algorithm (Sonka et al., 2008)

In series with SIAM. It is not SIAM!

4 N
Well-posed & sS4
(deterministic)

two-pass S1
connected- »
component

multi-level

image labeling
\_ algorithm .
Multi-level image, e.g., 3-level thematic map # Quantitative/ Segmentation map = {S1, ..., S9}.
with map Iegend {1 Water, Acronym =W, numeric image Acronym S means segment.

Pseudocolor = Blue; 2. Vegetation, Acronym )
= V, Pseudocolor = Green; 3. Bare soil, segmentation

Acronym = BS, Pseudocolor = Brown}. algorithms
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Cloud/Cloud-shadow quality layers

-

Fig. A. AUNIR-2 ALAV2A041622840 image of Sicily in false colors (R:
band 2, G: band 4, B: band 1). Path: ..., Row: ..., acquisition date: YYYY- consisting of 52 spectral categories.
MMDD, spatial resolution: 10 m.

Fig. C. Binary cloud mask generated from Fig. B, based on
segment-based color and geometric properties plus spatial
topological relationships (e.g., adjacency, inclusion).
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EO-IU4SQ’s example: Level-2 FAO-LCCS thematic map, Sensor 1

1(a). 4-band (B, G, R, NIR) ALOS AVNIR-2 image of Campania, ltaly, 1(g). 10-class classification map based on a convergence-of-evidence
radiometrically calibrated into TOARF values and depicted in false colors (R approach, in compliance with the FAO-LCCS 3-level Dichotomous Phase
=MIR, G = NIR, B = Visible Blue), 10 m resolution. [49], plus Cloud/Cloud-shadow detection. Map legend: === =

Sources of evidence are: image segments, color names, texture from segment contours. Noteworthy, neither geometric (shape and size) properties of
segments nor inter-segment spatial relationships have been investigated, yet. 34



EO-IU4SQ’s example: Level-2 FAO-LCCS thematic map, Sensor 2

1(a). Sentinel-2A image of Austria radiometrically calibrated into TOARF  1(g). 10c|ass classification map based on a convergence-of-evidence
values, depicted in false colors (R = MIR, G = NIR, B = Visible Blue), 10 m  approach, in compliance with the FAO-LCCS 3-level Dichotomous Phase
resolution. No histogram stretching for visualization purposes. [49], plus Cloud/Cloud-shadow detection. Map legend: 2 .
-

Sources of evidence are: image segments, color names, texture from segment contours. Noteworthy, neither geometric (shape and size) properties
of segments nor inter-segment spatial relationships have been investigated, yet. 35




EO-IU4SQ’s spatiotemporal analytics: Novelty values

The EO-1U4SQ system
for spatiotemporal
analytics of multi-
source EO big data.
Each EO image is
automatically provided
with
numeric/quantitative
and
categorical/qualitative
information layers.

Contributors:

- Martin Sudmanns
- Dirk Tiede

- Andrea Baraldi

- Mariana Belgiu

- Stefan Lang

TimeT1

Time Tn




EO-1U4SQ System Architecture (Unina & Univ. Salzburg)

base = Fct
base 1

1. Inference
engine for image
pre-processing

v

'

principle model, procedure ) base.

1)  Image pre-processing.

. Absolute calib., TOARF.

. A .

. Topogrphc cretn.

. Color constancy for nonclbrtd images.

2)  Prior color naming (preliminary
N classification).

o SIAM.

. RGBIAM.

3)  Driven-by-knowledge image

segmentation.
4)  Driven-by-knowledge texture

6. Standard rule (method, process, first-

segmentation.
5)  Planar shape description.

Laurini, p. 639. SIGMA, p. 158.

4. Translation of the 4D world-model
into 2D (planar) object appearance
properties and  spatiotemporal
relationships

5. Image-domain knowledge base.
Sensor-specific conceptual 3D (= 2S +T)
atiotemporal ER model of the image-objects i
techno-speak.
» 2D object appearance.
= Color naming.
=  Local shape.
= Texture.
* Inter-object spatial relationships (Data type:
Coverage).
=  Topological.

detection).
2) Full  primal
(texture detection).

8. Low-level vision engine
1) Raw primal sketch (texel

9. High-level vision engine
1) FAO-LCCS Dichotomous

p| Phase.
2) FAO-LCCS

Hierarchical phase.

sketch Modular

Marr, Vision, 1982.

9/13/2016

Marr, Vision, 1982.

=  Non-topological.

»  Time relationships (Data type: Time-series
/ Trajectory).

Laurini, p. 651. SIGMA, p. 42. Camara et al., 2014.

2. Scene-domain
knowledge base

Conceptual 4D (=3S +T)

spatiotemporal Entity- World-
"ofthe vt (sne) . knowledge
0 Wi |
user-speak transfer
from
1. humans to
GUL. the Knowledge
Part 1. machine engineer,
Human
domain
< expert
Imaging sensor
model Semantic
Querying
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, about
images, or
image-
derived
1. variables,
GUL. either
v Part 2. qualitative or
10. Query quantitative
executor. = User
Answer
37




EO-IU4SQ’s raster database set-up

Data cube (x, V, t)

— time
el
-
— E tim
_ y,
rasdaman ! X
! 1
e
< X S K y

E.g., Landsat Cardinality N
Bands 1 -7

2D (PLANAR) SENSORY VARIABLES (RAW IMAGES)
Bi-temporal

2D CATEGORICAL VARIABLES (THEMATIC MAPS,
MULTI_LEVEL IMAGES)

Area, Cardinality
Compactness,
) P>0
Greenness index B

2D CONTINUOUS VARIABLES (E.G., SPECTRAL INDEXES,
BIOPHYSICAL VARIABLES)

E.g., SIAM
categories,




EO-1U4SQ prototype demo

Through the GUI (a Architecture in a client-server solution

® st ]
engine), image-derived

information layers are

. Internet
made available to a user -

WCS 2.0, WCPS WPS (semantic queries)

for SCBIR or geospatial Data Hub
data analysis. Expert Red Hat
. . . Tomcat httpd
queries are forming a Enterprise IQ Image
growing knowledge base Linux HEEE IQ Backend loader N
for managing and sharing. Image Pre-
processing

Rasdaman PostgreSQL/PostGIS

Database ‘

awnl &

Sensory data, categ,, Petascope | Metadata
continous variables Metadata

SQL

(Sudmanns, M., 2016)

Web-based Image Querying (1Q) prototype. The term IQ is
used for the prototypical implementation of the EO-SQ
subsystem.

9/13/2016
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EO-1U4SQ prototype demo

@ Flat files
thematic
- “ -
A y | Categoricall| Contl
y Data Variable Variable

time

-

Dala organisation wilh dedicaled
images tor thermatic and temporal
dimension

Transformation
into 3 data cubes

\
-

Sensory data,
catzgorical variable,
continaus variable

Data cube model in array databases

thematic

f
i

Three lhemalic
data cubes with
main properlies:

1)

Voxels arranged as
dense temporal
slack

2)

Dala access using
declaralive query
lanquage

3)
Regular or irregular
partitioning (tiling)

(Sudmanns, M., 2016)

Storage using flat files versus storage of images in an array

database.

9/13/2016

To accomplish
efficient geospatial
data analysis through
time within a user-
defined AOI and
target time interval,
the implementation
adopts an array
database system
(specifically,
RasDaMan) within a
client-server
solution.



EO-1U4SQ prototype demo

9/13/2016

v Select Predefined Queries ~ Switch to Expert Modes

Send Query to Server

Help will be available soon

0 of 2 steps completed.
Geographic area not set!
Time not set!

I

Region of Interest

Time

From:

To:

Z GI§
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