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Applications

 Medical diagnosis e Computer vision
— Image segmentation
« Social network models — Tracking

— Scene understanding

e Speech recognition
* Photogrammetry

e Robot localization — Image classification
— 3D reconstruction
Remote sensing — 3D urban modeling

 Natural language processing®........



Applications

Segmentation

Yang, Rosenhahn, 2016 y



Classification
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(MNIST benchmark data)

Zhong & Wang 2011

Applications

Reading letters/numbers

Land-cover classification
INn remote sensing



Applications

e Building and road extraction

« [Facade interpretation

Yang & Forstner, 2011



Applications

Interpretation

o Traffic scene interpretation

Barth et al., 2010

* Holistic scene analysis
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Yang, 2015
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Probabilistic Graphical Models

are a marriage between

probability theory & graph theory



Graphical Models

Bayesian networks  Conditional/Markov random fields
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Graphical Models

e Graph G

set of the nodes v={1,---,i,--- ,n}

set of the undirected edges
E={{i,j}1i,jeV}

set of the directed edges

A={0,j) i) €V}
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Graphical Models

 Graphical models

A stochastical model represented by a graph G
g=MWE,A)

* Nodes? € V represent random variablesx

* Edges represent mutual relationships
> Undirected edges {7, j} model joint probabilities
P(x;,%;)
> Directed edges (7, 7) model conditional dependencies
P(x; | x;)
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Graphical Models

 Graphical models

* Visualization of dependencies

« Conditional probabilities : directed edges
(Bayesian Networks)

« Joint probabilities: undirected edges
(Markov Random Field)

N

13



e Conditional/Markov Random Fields
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Photogrammetry/CV:
2D/3D Image Segmentation
Object Recognition
3D Reconstruction
Stereo / Optical Flow
Image Denoising
Texture Synthesis
Pose Estimation
Panoramic Stitching
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o Definition
Markov random field : graphical model over an undirected graph
+ positivity property + Markov property H=(V,E)
P(x) >0

> Set of random variables linked to nodes

{z;,7 €V} X = [z;]

» Set of neighbored random variable

N(z;) = {z; | j € N}

Markov property:
P(z; | xy_y) = Pz | xn;)
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e Joint distribution (Hammersley & Cliord, 1971)

If positive distribution and Markov property:
Markov random field <— Gibbs random field

1
P(x) = 7 H Pe(Xc)
Potential functions referring to maximal cliques celC

Ge(x:) >0

Partition function, normalization constant

Sum over all states the complete Markov field!
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 Equivalent representation of distribution in MRF
If positive distribution and Markov property:
Markov random field <— Gibbs random field

P(x) = o J] delxe) =  exp(~ B(x)

ceC

Ex) =Y pulx.)

Energy

 Choice of potential functions

Need not be probabilities
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e Structure of MRFs
Typical graph structures

rectangular grid irregular graph pyramid structure

Figure courtesy of P. Perez
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e Pairwise MRFs
popular
P(x) = — exp(—E(x))

with energy function

E = ZE1 )+ Y By, ;)

A=V ( nary {1, ;_}EJ Puer wise
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MREFs

 Image Denoising using Pairwise MRFs

From Bishop PRML] noisy image result

21



 Definition: conditioan!l random fields

A CRF is an MRF globally conditioned on observed data
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 Definition: conditioan!l random fields

A CRF is an MRF globally conditioned on observed data

MRF
Joint distribution

P(x,d) = iexp(—E(::c)) = —exp ( ZQ)C (x,) )

A4
ceC
CRF

Conditional distribution

Plx | d) = %exp(—E(;c | d)) = —exp ( Zoc (. | d )
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Yang & Forstner, 2011

Building facade image Region adjacency graph
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CRF has a Gibbs distribution

P(x | d) = exp(~Ele | d)

Gibbs energy function (all dependent on data)

E = ZEl o Y Ex(, ;)

=Y ( nary {i.7}eN Prmuzae
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Hierarchical CRFs

Yang & Forstner, 2011
(a) Test image (b) Multi-scale segmentation
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Region adjacency graph

Blue edges Multi-layer CRF

Region hierarchy graph
Red edges
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Hierarchical CRFs

Energy function

E = ZEl +aZE +=ﬁZEa

eV [ naruy {i,7}eN P(m wise {i,k}eH Hsr_f mu’urnf

»Unary potential: classifier output (RF)
» Pairwise potential: (Data-dependent) Potts
» Hierarchical potential: (Data-dependent) Potts
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Scene Interpretation

Framework

Image
segmentation

v

Feature extraction

v

Learned
graphical model

building pavement road vegetation window

Workflow for image interpretation of man-made scenes
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ETRIMS Database

Basel

Bonn

Prasue

Hamburg

building car door pavement road vegetation window
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Example Image

One example image Ground truth labeling
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Classification Results

building door pavement vegetation window

Region classifier (RDF) Pairwise CRF
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HCRF Results

building car sky vegetation window
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HCRF Results
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building car door pavement road sky vegetation window




HCRF Results

Pixelwise accuracy comparison

C > watershed mean shift
RDF 55.4% 58.8%
CRF 61.8% 65.8%
HCRF 65.3% 69.0%

34



CRF for Sensor Fusion
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i
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Zhang, Yang, Zhou, 2015

Multi-sensor fusion
» Optical image
> Lidar data
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Graph Construction

> Lidar level LIDAR Data

» Image level
» Multi-scale segmentation




MSMSHCRFE Model

The conditional probability of the class labels x given an
Image d and Lidar data L

P(z|d L) = %exp(—E(af; d.L))
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MSMSHCRFE Model

Energy function

E = ZEl ) +a Z qu

AV (nrnf_,f li.j}eN Prl??u?%ﬁ

_|_6 Z ,E3<£C”é7$k,—|_7 Z ,Eﬂx(xiaajt),

{i,k}eS scaleHierar. {i,t}eM sourceHierar.
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MSMSHCRFE Model

Energy function

E = ZEl o Y Ex(zi, ;)

=2V ( nary li.j}eN Prm wise

_|_6 Z ,E?)(xiawk),_l_/}/ Z ,Eﬂx(x’éamt),

{i,k}eS scaleHierar. {i,t}eM sourceHierar.

»E1: Unary potentials
relation between class labels and image

»E2: Pairwise potentials
relation between class labels of neighboring regions within each scale
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MSMSHCRFE Model

Energy function

E = ZEl o Y Ex(zi, ;)

=2V ( nary li.j}eN Prm wise

_|_6 Z ,E?)(xiawk),_l_/}/ Z ,Eﬂx(x’éamt),

{i,k}eS scaleHierar. {i,t}eM sourceHierar.

»E3: Multi-Scale hierarchical pairwise potential
relation between regions in neighboring scales of images

»E4: Multi-Source hierarchical pairwise potential
relation between image and Lidar data
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Results
Dataset: Beljing Airborne Data

3 classes: {Building, Road, Vegetation}

50 images for training / 50 images for testing
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Image Lidar Classification result
(red - building, blue - road, green — vegetation)
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Comparison
Method Accuracy (%)
Standard CRF 64.2
Hierarchical CRF 70.3
Multi-Source CRF 73.6
MSMSCRF 83.7
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building road vegetation
building 78.3 11.9 0.8
road 9.5 85.9 4.6
vegetation 9.7 8.7 81.6

Confusion Matrix
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Results
Dataset: ISPRS Benchmark
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Results
Dataset: ISPRS Benchmark




Lavout Estimation

*CRF: fuse RGB and depth

7

Image+depth  Object/Layout Ground truth

{sitting place, ground floor, background} e() bject/Layout

Shoaib, Yang, Rosenhahn, Ostermann, 2014
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Object Segmentation

Single Image

Object Class

Depth Upsampling

Huang, Gong, Yang, 2015
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Hyvperspectral Image Classification

Image GP result GP-MRF result
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Liao, Tang, Rosenhahn, Yang, 2015
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e Future
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Fully-connected CRF

8-connected CRF

connected CRF

4
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FuII Connepted CRF

Image

Unary

Final

Li, Yang, 2016
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Fully Connected CRF

Image Texonboost FC-CRF
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Semantic Video Segmentation
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Semantic Video Segmentation

o Spatial-Temporal Deep Structured Models
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Semantic Video Segmentation

o Spatial-Temporal Deep Structured Models
 Weakly-Supervised Learning CNN+CRF

» Basic idea: given a few videos with limited labeled frames,
we first estimate pseudo noisy ground truth for each frame
In training set. Then we use all the labeled frames to train a

CNN.
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Semantic Video Segmentation

Generating Pseudo Ground Truth Data
CRF for Label Propagation

GT Image
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Semantic Video Segmentation

CNN Training

Frame It GTe

PGT:
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Semantic Video Segmentation

Results
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Thank youl!
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